Course Category:				Program Core							Credits:			3	
Course Type:				Theory						Le	Lecture-Tutorial-			3-0-0	
											Practical: Continuous				
Prerequisites:				19CE3501- Structural Analysis							Evaluati		3	30	
										:	Semester End , Evaluation:			70	
1										-					
				Total Marks: 1										00	
Course		2.12	alation	n of the		the str	dant wi	11 ha ak	latar						
<u> </u>										e hv v	vorking	and lim	it state		
CO1				lesign be							working	and ini	in state	K2	
CO2		0,		<u> </u>							by limit:	state met	hod.	K4	
CO3											ate metho			K4	
CO4		Analyze and design both concentric and eccentrically loaded compression members by limit													
		state method. Analyze and design both laterally supported & unsupported beams by limit state method.													
CO5														K4	
	PO1	PO2	PO3	PO4	2	PO6	PO7	PO8	PO9	PO10	ogram O PO11	PO12	S PSO1	PSO2	
CO1	2	2	3	104	2	-	2	100	10)	2	1011	2	3	1502	
CO1	2	2	3		2	+	2			2		2	3		
CO2	2	2	3		2		2			2		2	3		
CO4	2	2	3		2		2			2		2	3		
CO5	2	2	3				2			2		2	3		
	_	1- Lo	-			1	2-Me	dium			1	- 3-High	0		
						Cou			ont						
UNIT-	$\begin{array}{c c} 1 & \mathbf{D} \\ \mathbf{W} \\ \mathbf{B} \\ \mathbf{F} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{F} \\ \mathbf{V} \\ \mathbf{W} \end{array}$	 Working stress and limit state method of design. BOLTED CONNECTIONS Types of fasteners, Bolts & Bolted Connection, Failure of a joint, strength and efficiency of a joint, Design of lap joint, butt joint and eccentric connections. WELDED CONNECTIONS 								ept of h and	CO1				
UNIT-	-3 Tyfa	 Types of weids, subsets in weids, design of out weided and Three weided joints subjected to axial load, eccentric welded connections. TENSION MEMBERS Types of tension members and sections, behaviour of tension members, Modes of failures, net effective sectional area for plates and angle sections, design of tension members using plates, single angles and double angles, lug angles. 								CO					
UNIT-	-4 cc str	COMPRESSION MEMBERS Types of compression members and sections, Behaviour and failures of Compression members, Effective length, radius of gyration and slenderness of compression members, design compressive stresses in compression, design of struts, design of axially loaded compression members, built up compression members (I section and two channels) laced and battened columns, design of eccentrically loaded columns.								CO4					
		BEAMS Introduction, Types of steel beam sections, Classifications of sections, lateral stability of beams, factors affecting lateral stability, behaviour of simple beams in bending, design strength of laterally supported & unsupported beams, design of laterally supported and unsupported beams. Page 141 of 268													

19CE3601 – DESIGN OF STEEL STRUCTURES

	Learning Resources						
Text Books	 S.K. Duggal, Limit state Design of steel structures, 2/e, Tata McGraw Hill, 2017. N. Subramanyam, Design of Steel Structures, 2/e, Oxford University Press, 2016. 						
Reference Books	 L. Shah and Veena Gore, Limit State Design of steel structures IS:800-2007, Structures Publications, 3/e, 2012. M.L. Gambhir, Fundamentals of Structural Steel Design, McGraw Hill Education, 2013. Ramachandra and V. Gehlot, Design of Steel Structures, 2/e, Scientific Publishers, 2015. Shiyekar M R, Limit State Design in Structural Steel, 3/e, Prentice Hall of India Pvt Ltd, 2017. 						
e-Resources& other digital material	 https://nptel.ac.in/courses/105106112/3 https://lecturenotes.in/subject/161/design-of-steel-structure-dss https://nptel.ac.in/courses/105/105105162/ http://www.nptelvideos.in/2012/11/design-of-steel-structures.html https://freevideolectures.com/course/2679/design-of-steel-structures 						